Sintering behaviour and microwave dielectric properties of $MgO-2B_2O_3-xwt\%BaCu(B_2O_5)-ywt\%H_3BO_3$ ceramics Haiquan WANG, Shixuan LI, Kangguo WANG, Xiuli CHEN, Huanfu ZHOU* Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China Received: March 21, 2021; Revised: May 20, 2021; Accepted: May 27, 2021 © The Author(s) 2021. **Abstract:** This study investigates the bulk density, sintering behaviour, and microwave dielectric properties of the MgO– $2B_2O_3$ series ceramics synthesised by solid-state reaction. According to the X-ray diffraction and microstructural analyses, the as-prepared MgO– $2B_2O_3$ ceramics possess a single-phase structure with a rod-like morphology. The effects of different quantities of H_3BO_3 and $BaCu(B_2O_5)$ (BCB) on the bulk density, sintering behaviour, and microwave dielectric properties of the MgO– $2B_2O_3$ ceramics were investigated. Accordingly, the optimal sintering temperature was obtained by adding 30 wt% H_3BO_3 and 8 wt% BCB. We also reduced the sintering temperature to 825 °C. Furthermore, the addition of 40 wt% H_3BO_3 and 4 wt% BCB increased the quality factor, permittivity, and temperature coefficient of resonance frequency of MgO– $2B_2O_3$ to 44,306 GHz (at 15 GHz), 5.1, and -32 ppm/°C, respectively. These properties make MgO– $2B_2O_3$ a viable low-temperature co-fired ceramic with broad applications in microwave dielectrics. **Keywords:** low-temperature co-fired ceramics (LTCC); sintering temperature; MgO–2B₂O₃; H₃BO₃; microwave dielectrics; temperature coefficient of resonance frequency ### 1 Introduction Low-temperature co-fired ceramics (LTCC) are widely used in the wireless communication and broadcasting industries as raw materials for manufacturing electronic components, owing to their low manufacturing cost, short development cycle, and potential for the miniaturisation of electronic devices [1–4]. However, most high $Q \times f$ dielectric materials are manufactured at high sintering temperatures, which hinder their incorporation with low melting-point electrodes and polymer-based substrates and lead to excess energy consumption and evaporation of volatile components. For practical application, LTCC requires excellent microwave dielectric properties, low sintering temperature, and adequate co-fire matching between ceramics and electrodes [5–10]. Materials with low melting points are often added to LTCC to reduce the required firing temperatures. However, this approach weakens the microwave dielectric properties. MgO–B₂O₃ ceramics have drawn research interest because of its potential applications in LTCC devices. Davis and Knight [11] systematically reported the chemistry of MgO–B₂O₃ binary systems, i.e., MgO–B₂O₃, MgO–1/2B₂O₃, and MgO–1/3B₂O₃. Nishizuka *et al*. [12] demonstrated that the MgO–xB₂O₃ (x = 25 and 33) * Corresponding author. E-mail: zhouhuanfu@163.com sintered at low temperatures exhibited remarkable dielectric properties with a permittivity (ε_r) of approximately 7 and quality factors ($Q \times f$) of 79,100–260,100 GHz (x = 33) and 39,600–310,000 GHz (x = 25). Peng *et al*, [13,14] reported the synthesis of 0.8Zn₃B₂O₆ + 0.2Mg₃B₂O₆ composite ceramics for LTCC applications and obtained excellent dielectric properties at 950 °C sintering with a ε_r of 6.47, $Q \times f$ of 89,600 GHz, and temperature coefficient of resonance frequency (τ_f) of approximately 48.6 ppm/°C. In addition, optimized Zn₃B₂O₆ ceramics using Ni²⁺ instead of Zn²⁺ were reported with strong dielectric properties at 900 °C with a ε_r of 6.9, $O \times f$ of 91,000 GHz, and τ_f of approximately 55.6 ppm/°C. Peng et al. [15] reported Li₂(Mg_{1-x}Ni_x)SiO₄ ceramics with the addition of 2 wt% lithium-boron-bismuth-silicon (LBBS) glass and realised excellent dielectric properties at 900 °C (sintering) and microwave dielectric properties. Fan et al. [16] reported optimal microwave dielectric properties at a sintering temperature as low as 1100 °C with a molecular ratio of MgO: $B_2O_3 = 1:1$. The resulting ceramics demonstrated strong microwave dielectric properties with a ε_r of 5.83, $Q \times f$ of 41,930 GHz, and τ_f of approximately 62 ppm/°C. According to Zhou et al. [17], MgO-2B₂O₃-4wt%BaCu(B₂O₅) ceramics possess appropriate microwave dielectric properties, showing promise in LTCC applications. However, the microwave dielectric properties of B₂O₃-rich ceramics in a MgO-B₂O₃ binary system (e.g., MgO-2B₂O₃ and MgO-B₂O₃) have not been investigated in detail. In addition, the sintering temperature of MgO-2B₂O₃ceramics remains considerably high for LTCC devices [18]. Sintering additives [19-29], ultrafine powders [30-34], and low-sintering-temperature materials [35-37] can be used to reduce the sintering temperature of ceramics. However, the preparation of ultrafine powder with low intrinsic sintering temperatures is expensive, complex, and difficult to expand for commercialisation. Glass exhibits much lower $Q \times f$ value than pure microwave dielectric ceramics [38]. Therefore, when microwave ceramics are doped with glass, the quality factor decreases [1,39]. BaCu(B₂O₅) (BCB) has a low melting temperature, adequate wettability, and strong microwave dielectric properties. Therefore, its addition for sintering will contribute to the densification of Mg₃B₂O₆ ceramics [24,40]. Furthermore, researchers effectively reduced the sintering temperature of MgO by adding the appropriate amount of sintering materials [37], such as B₂O₃, H₃BO₃, and BCB. However, the microwave dielectric properties of MgO–2B₂O₃–xwt%BCB–ywt%H₃BO₃ ceramics have not been investigated systematically, which is the objective of this research. ## 2 Experimental MgO-2B₂O₃-xwt%BCB-vwt%H₃BO₃ ceramics were prepared using solid-state reaction method. MgO $(\ge 98.5\%)$, H₃BO₃ ($\ge 99\%$), Ba(HO)₂·8H₂O ($\ge 99\%$), and CuO (≥ 99%) were acquired from Guo-Yao Co., Ltd., Shanghai, China. MgO powder was pre-calcined at 800 °C for 2 h. The raw materials were weighed according to the molar ratio of MgO: $B_2O_3 = 1:2$. The powders were mixed thoroughly in a nylon jar before ball milling for 4 h. Then, the dried powder mixture was calcined at 800 °C for 4 h. H₃BO₃ and BCB with different mass ratios were added to the calcined powder. The mixture of H₃BO₃, BCB, and calcined powder was re-milled for 4 h and pressed into the form of cylinder with a diameter of 10 mm and a height of 4-5 mm, under a uniaxial pressure of 100 MPa. Pellets were fired at 550 °C for 4 h to eliminate polyvinyl alcohol (PVA). Subsequently, the samples were sintered for 4 h at 750–975 °C in air. Archimedes' principle was employed to measure the bulk density. X-ray diffractometer (X'PERT PRO, PANalytical, Almelo, the Netherlands), equipped with Cu K α radiation instrument ($\lambda = 0.15406$ nm), was used for the structural analysis. Scanning electron microscope (SEM; JSM-6380LV, JEOL, Tokyo, Japan) was used to observe the microstructure of the as-fired surfaces. A 300 kHz–20 GHz network analyzer (E5071C, Agilent Co., CA, USA) was used to measure the microwave dielectric properties. The $\tau_{\rm f}$ values were calculated in the temperature range of 25–85 °C using the following expression: $$\tau_{\rm f} = \frac{f_{\rm T} - f_{\rm T0}}{f_{\rm T0}(T - T_0)} \times 10^6 \tag{1}$$ where $f_{\rm T}$ and $f_{\rm T0}$ represent the resonant frequencies at 85 °C (T) and 25 °C (T_0), respectively. #### 3 Results and discussion Figure 1 illustrates the XRD profiles of MgO– $2B_2O_3$ –xwt%BCB–10wt% H_3BO_3 (x = 2, 4, 6,and 8) ceramics sintered at their optimal temperatures. The XRD **Fig. 1** XRD patterns of MgO–2B₂O₃–xwt%BCB–10wt%H₃BO₃ (x = 2, 4, 6, and 8) ceramics sintered at their optimal temperatures: (a) x = 2, 950 °C, (b) x = 4, 925 °C, (c) x = 6, 850 °C, and (d) x = 8, 825 °C. patterns were indexed as MgB_4O_7 (JCPDS Card No. 00-031-0787), indicating that the addition of H_3BO_3 and BCB had no effect on the phase structure of the ceramics. Figures 2(a)–2(d) illustrate the SEM images of the MgO–2B₂O₃–xwt%BCB–10wt%H₃BO₃ (x=2,4,6, and 8) ceramics sintered at optimal temperatures. The MgO–2B₂O₃ crystals possess a rod-like shape and are refined with the increase in the BCB content. As the BCB content increased to 8 wt%, the MgO–2B₂O₃ crystals exhibited a glassy phase. Moreover, the porosity increased with the increase in BCB content. When x=4, two grains of the MgO–2B₂O₃–xwt%BCB–10wt%H₃BO₃ ceramics with the optimal sintering temperature of 925 °C were selected for the energy dispersive X-ray spectroscopy (EDS) test. Table 1 lists the results of this test. The grains in region I consist of Mg, B, O, Cu, and Ba in the molar ratio of Mg : B : O = 29.78 : 17.14 : 52.28. Therefore, the compositions of the grains in regions I and II are MgB $_{0.58}O_{1.8}$ and MgB $_{4}O_{7}$, respectively. Figure 3 depicts the bulk density, ε_r , $Q \times f$, and τ_f of the MgO–2B₂O₃–xwt%BCB–10wt%H₃BO₃ (x=2,4,6, and 8) ceramics sintered at different temperatures. As the sintering temperature increased, the bulk density initially increased, indicating that the samples became denser, and then decreased slightly (Fig. 3(d)). Subsequently, the increase in porosity of the samples owing to the high sintering temperature decreased the bulk density. The bulk density change remains consistent with the appearance of porosity, as shown in Figs. 2(a)–2(d). When sintering temperature was increased from 900 to 950 °C, the $Q \times f$ of the MgO-2B₂O₃-2wt%BCB-10wt%H₃BO₃ ceramics increased from 25,408 to 33,951 GHz, highlighting a change in porosity with a change in the sintering temperature. The minimum porosity was obtained at 900 °C. However, with the further increase in the sintering temperature, the $Q \times f$ of the MgO-2B₂O₃-2wt%BCB-10wt%H₃BO₃ ceramics decreased to 32,541 GHz due to over-firing. The $Q \times f$ of MgO-2B₂O₃-xwt%BCB-10wt%H₃BO₃ (x = 2, 4, 6, and 8) ceramics first increased and then decreased with the increase in sintering temperatures. Fig. 2 SEM images of MgO-2B₂O₃-xwt% BCB-10wt% H₃BO₃ ceramics sintered at their optimal temperatures for 4 h: (a) x = 2,950 °C, (b) x = 4,925 °C, (c) x = 6,850 °C, and (d) x = 8,825 °C. Table 1 EDS results of MgO-2B₂O₃-4wt%BCB-10wt%H₃BO₃ ceramics | Spot | Atom element (%) | | | | | | | |------|------------------|-------|-------|--------|--------|--|--| | | Mg (K) | B (K) | O (K) | Cu (K) | Ba (K) | | | | I | 29.78 | 17.14 | 52.28 | 0.68 | 0.13 | | | | II | 12.28 | 39.62 | 47.74 | 0.21 | 0.15 | | | **Fig. 3** Variation in bulk density, ε_r , $Q \times f$, and τ_f values of MgO–2B₂O₃–xwt%BCB–10wt%H₃BO₃ (x=2,4,6, and 8) ceramics after sintering at different temperatures. The optimal sintering temperature decreased from 950 to 850 °C when BCB content increased from 2 to 8 wt%. The $Q \times f$ reached a maximum of 40,076 GHz at 4 wt% BCB, indicating that the addition of the appropriate amount of BCB reduced the sintering temperature and improved the $Q \times f$ of the MgO-2B₂O₃-10wt%H₃BO₃ ceramics. Figure 3(b) illustrates the change in ε_r of the MgO–2B₂O₃–xwt%BCB–10wt%H₃BO₃ (x=2,4,6, and 8) ceramics at different temperatures. The ε_r of ceramics with 6 and 8 wt% BCB increased with the increase in the sintering temperature, whereas that of ceramics with 2 and 4 wt% BCB decreased, indicating that the addition of BCB had a significant effect on the ε_r of the MgO–2B₂O₃ ceramics. Figure 3(c) presents τ_f at different sintering temperatures, which exhibits a trend similar to that of $Q \times f$. The τ_f of the MgO–2B₂O₃–2wt%BCB–10wt%H₃BO₃ ceramic was –40 ppm/°C at a sintering temperature of 925 °C. It initially increased with the increase in the sintering temperature and then decreased marginally. Therefore, τ_f is affected by the chemical additives and composition of the ceramic [37,41]. Notably, the τ_f of the MgO–2B₂O₃–xwt%BCB–10wt%H₃BO₃ ceramics demonstrated an overall decreasing trend with increasing BCB content. Additionally, the sintering temperature decreased with the increase in the BCB content, demonstrating its ability as a sintering aid. The optimal ceramic properties with a bulk density of 2.409 g/cm³, $Q \times f$ of 40,076 GHz, and ε_r of –40 ppm/°C were obtained at 4 wt% BCB and a sintering temperature of 925 °C. Figure 4 presents the room-temperature XRD profiles of the MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ ($10 \le y \le 40$) ceramics sintered at their optimal temperatures. The results showed that the MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ ($10 \le y \le 40$) ceramics were crystallised in the orthorhombic space group *Pbca* without impurity phases, indicating that the addition of H₃BO₃ had no negative effect on the phase structure of the ceramics. Figure 5 presents the SEM images of the MgO– $2B_2O_3$ –4wt%BCB–ywt%H $_3$ BO $_3$ ($10 \le y \le 40$) ceramics sintered at their optimal temperatures. A distinct microstructure was observed for the ceramics with different H $_3$ BO $_3$ contents. With the increase in the H $_3$ BO $_3$ content, the MgO– $2B_2O_3$ –4wt%BCB–ywt%H $_3$ BO $_3$ ceramics achieved denser, more homogeneous microstructures. However, at 40 wt% H $_3$ BO $_3$, a mild over-burning was observed owing to the presence of excessive sintering aid, resulting in an abnormal grain growth, as shown in Fig. 5(d). The EDS test of MgO– $2B_2O_3$ –4wt%BCB–ywt%H $_3$ BO $_3$ ceramic as y = 40 sintered at 900 °C was carried out to identify the **Fig. 4** XRD patterns of the MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ (10 $\leq y \leq$ 40) ceramics sintered at different temperature: (a) y = 10, 925 °C, (b) y = 20, 900 °C, (c) y = 30, 900 °C, and (d) y = 40, 900 °C. **Fig. 5** SEM images of MgO–2B₂O₃–4wt% BCB–ywt% H₃BO₃ (y = 10, 20, 30, and 40) ceramics sintered at their optimal temperatures: (a) y = 10, 925 °C, (b) y = 20, 900 °C, (c) y = 30, 900 °C, and (d) y = 40, 900 °C. composition, as shown in Table 2. Owing to the low instrumental precision, the Mg : B : O molar ratios of regions III, IV, and V were 10.85 : 41.05 : 47.75, 15.71 : 33.81 : 50.28, and 15.87 : 30.43 : 53.62, respectively. In addition, as the molar ratio of Cu and Ba in region III was approximately 1 : 1, the grain composition of this region contains MgB₄O₇ and BCB. The grains in regions IV and V can be considered as MgB_{2.2}O_{3.2} and MgB_{1.9}O_{3.2}, respectively. This confirms the results of the MgB₄O₇ phase formation. Figure 6 illustrates the bulk density, ε_r , $Q \times f$, and τ_f of the MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ ceramics at different sintering temperatures. The bulk density of the ceramics initially increased and then slightly decreased with the increase in the H₃BO₃ content, except for those with 10 wt% H₃BO₃. The maximum bulk density of MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ with 10 wt% H₃BO₃ was obtained at a sintering temperature of 925 °C. However, when H₃BO₃ increased to 20–40 wt%, the maximum bulk density was obtained at 900 °C, indicating that the addition of H₃BO₃ as a sintering aid reduced the sintering temperature of the ceramics. Table 2 EDS results of MgO–2B₂O₃–4wt%BCB–40wt%H₃BO₃ ceramics | Spot | Atom element (%) | | | | | | |------|------------------|-------|-------|--------|--------|--| | | Mg (K) | B (K) | O (K) | Cu (K) | Ba (K) | | | III | 10.85 | 41.05 | 47.75 | 0.16 | 0.18 | | | IV | 15.71 | 33.81 | 50.28 | 0.19 | 0.01 | | | V | 15.87 | 30.43 | 53.62 | 0.07 | 0.02 | | In general, the $Q \times f$ of microwave dielectric ceramics is related to the grain size, porosity, densification, and secondary phases [42–44]. The $Q \times f$ of the MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ ceramics first increased as the sintering temperature increased up to 900 °C and then decreased, demonstrating excellent consistency with varying bulk density. Because there was no secondary phase in the MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ ceramics, the $Q \times f$ was primarily affected by the sintering temperature and H₃BO₃ content, which altered the density and grain size. At a sintering temperature of 850 °C, the MgO–2B₂O₃–4wt%BCB–10wt%H₃BO₃ ceramics showed a significant proportion of pores between grains, resulting in a lower $Q \times f$. At 900 °C, a denser **Fig. 6** Bulk density, relative permittivity, $Q \times f$, and $\tau_{\rm f}$ values of the MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ ceramics (y=10–40) at different sintering temperatures. microstructure of MgO–2B₂O₃–4wt%BCB–40wt%H₃BO₃ resulted in a maximum $Q \times f$ of 44,306 GHz, a relative ε_r of 5.1, and τ_f of –32 ppm/°C. The dielectric properties depend on relative density, crystal structure, and other phase contents [45,46]. The relative ε_r of the MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ ceramics was consistent with the change in bulk density. The maximum ε_r was found to be 4.81 at 10 wt% H₃BO₃. Furthermore, an overall increase in the relative ε_r of the H₃BO₃-containing ceramics was observed when the H₃BO₃ content was increased to 20, 30, and 40 wt%. Hence, the variations in the H₃BO₃ content, sintering temperature, and bulk density influenced ε_r . Notably, the variations in ρ , ε_r , $Q \times f$, and τ_f values for MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ (y=10, 20, 30, 30, 30, 40) were consistent with the changes in the H₃BO₃ content. As mentioned earlier, as the optimal sintering temperature of the MgO–2B₂O₃–4wt%BCB–ywt%H₃BO₃ ceramics decreased from 925 to 900 °C, the $Q \times f$, relative ε_p , τ_f , and bulk density increased from 40,076 to 44,306 GHz, from 4.81 to 5.11, from -40 to -32 ppm/°C, and from 2.460 to 2.463 g/cm³, respectively. The increase in the H_3BO_3 content both lowered the sintering temperature and improved the microwave dielectric properties of the MgO-2B₂O₃-4wt%BCB-vwt%H₃BO₃ ceramics. Table 3 tabulates the sintering temperatures and microwave dielectric properties of the MgO-2B₂O₃xwt%BCB-ywt%H₂BO₃ ceramics at different BCB and H₃BO₃ contents. When the BCB content was constant, the decrease in the sintering temperature was negligible as the H_3BO_3 content increased. τ_f remained stable at approximately -62 to -32 ppm/°C. When the H₃BO₃ content was constant, the BCB content increased, gradually decreasing the required sintering temperature. The $Q \times f$ increased initially and then decreased at a higher BCB content. In summary, the addition of BCB and H₃BO₃ reduced the sintering temperature and increased the $Q \times f$ of the MgO-2B₂O₃-xwt%BCB-ywt%H₃BO₃ ceramics. This can be attributed to the growth of the MgO-2B₂O₃ grains. The optimal sintering temperature of the produced ceramics reduced to 825 °C, indicating that it can be used as an alternative material in LTCC devices. $Table \ 3 \quad Microwave \ dielectric \ properties \ and \ optimal \ sintering \ temperatures \ of \ MgO-2B_2O_3-xwt\%BCB-ywt\%H_3BO_3 \ ceramics$ | Compound | S.T. (°C) | $Q \times f(GHz)$ | \mathcal{E}_{r} | $\tau_{\mathrm{f}} (\mathrm{ppm}/^{\circ}\mathbb{C})$ | Ref. | |--------------------------------------------------------------------------------------------------------|-----------|-------------------|----------------------------|--------------------------------------------------------|-----------| | $MgO\!-\!2B_2O_3\!-\!2wt\%BCB\!-\!10wt\%H_3BO_3$ | 950 ℃ | 36,954 | 4.37 | -50 | | | $MgO\!-\!2B_2O_3\!-\!2wt\%BCB\!-\!20wt\%H_3BO_3$ | 900 ℃ | 33,591 | 4.44 | -35 | | | $MgO\!-\!2B_2O_3\!-\!2wt\%BCB\!-\!30wt\%H_3BO_3$ | 900 ℃ | 37,251 | 4.51 | -51 | | | $MgO\!-\!2B_2O_3\!-\!2wt\%BCB\!-\!40wt\%H_3BO_3$ | 900 ℃ | 35,981 | 4.59 | -47 | | | $MgO\!-\!2B_2O_3\!-\!4wt\%BCB\!-\!10wt\%H_3BO_3$ | 925 ℃ | 40,076 | 4.81 | -40 | | | $MgO\!-\!2B_2O_3\!-\!4wt\%BCB\!-\!20wt\%H_3BO_3$ | 900 ℃ | 42,708 | 5.00 | -45 | | | $MgO\!-\!2B_2O_3\!-\!4wt\%BCB\!-\!30wt\%H_3BO_3$ | 900 ℃ | 43,425 | 5.06 | -42 | | | $MgO\!-\!2B_2O_3\!-\!4wt\%BCB\!-\!40wt\%H_3BO_3$ | 900 ℃ | 44,306 | 5.10 | -32 | TELL 1 | | $MgO\!-\!2B_2O_3\!-\!6wt\%BCB\!-\!10wt\%H_3BO_3$ | 850 ℃ | 37,917 | 5.31 | -62 | This work | | $MgO-2B_2O_3-6wt\%BCB-20wt\%H_3BO_3$ | 850 ℃ | 40,465 | 5.05 | -59 | | | $MgO\!-\!2B_2O_3\!-\!6wt\%BCB\!-\!30wt\%H_3BO_3$ | 850 ℃ | 41,477 | 5.07 | -38 | | | $MgO\!-\!2B_2O_3\!-\!6wt\%BCB\!-\!40wt\%H_3BO_3$ | 800 °C | 37,718 | 5.21 | -40 | | | $MgO-2B_2O-8wt\%BCB-10wt\%H_3BO_3$ | 850 ℃ | 38,664 | 5.11 | -61 | | | $MgO\!-\!2B_2O_3\!-\!8wt\%BCB\!-\!20wt\%H_3BO_3$ | 825 ℃ | 33,985 | 5.28 | -60 | | | $MgO\!-\!2B_2O_3\!-\!8wt\%BCB\!-\!30wt\%H_3BO_3$ | 825 ℃ | 34,618 | 5.26 | -50 | | | $MgO\!-\!2B_2O_3\!-\!8wt\%BCB\!-\!40wt\%H_3BO_3$ | 800 °C | 36,064 | 5.12 | -51 | | | (1-x)Zn ₃ B ₂ O ₆ + x Mg ₃ B ₂ O ₆ | 950 ℃ | 89,600 | 6.47 | 48.6 | [13] | | $Mg_3B_2O_6 + 55wt\%LMZBS$ | 950 ℃ | 50,000 | 6.80 | -64 | [47] | | $Mg_3B_2O_6 + 35\%LMBS$ | 950 ℃ | 21,000 | 6.50 | -49.5 | [48] | Note: S.T. means sintering temperature. ## 4 Conclusions In summary, MgO-2B₂O₃-xwt%BCB-ywt%H₂BO₃ (x =2, 4, 6, and 8; y = 10, 20, 30, and 40) ceramics were prepared using solid-state reaction; the influence of the H₃BO₃ and BCB contents on the bulk density, sintering behaviour, and microwave dielectric properties were systematically investigated. The MgO-2B₂O₃ $xwt\%BCB-10wt\%H_3BO_3$ (x = 2, 4, 6, and 8) ceramics consisted of a single-phase MgO-2B₂O₃ with the orthorhombic space group *Pbca*. The $Q \times f$ of the $MgO-2B_2O_3-xwt\%BCB-10wt\%H_3BO_3$ (x = 2, 4, 6, and 8) ceramics increased initially and then decreased gently as the BCB content increased. The optimal properties of the resulting MgO-2B₂O₃-4wt%BCB- $10\text{wt}\%\text{H}_3\text{BO}_3$ ceramic were $\rho = 2.409 \text{ g/cm}^3$, $Q \times f =$ 40,076 GHz, $\varepsilon_r = 5$, and $\tau_f = -45$ ppm/°C. In addition, the microwave dielectric properties and sintering temperature of the MgO-2B₂O₃-4wt%BCB-ywt%H₃BO₃ ceramics (y = 10, 20, 30, and 40) improved as the H₃BO₃ content increased at 4 wt% BCB. The resulting MgO-2B₂O₃-4wt%BCB-40wt%H₃BO₃ demonstrated excellent microwave dielectric properties, with ε_r , $Q \times f$, and τ_f of 5.1, 44,306 GHz (at 15 GHz), and $-32 \text{ ppm/}^{\circ}\text{C}$, respectively. This study presented a novel approach to modify the τ_f of MgO-B₂O₃ ceramics, which is an important parameter that governs the stability and performance of microwave equipment and devices. #### **Acknowledgements** This work was supported by the National Natural Science Foundation of China (Nos. 61761015 and 12064007), the Natural Science Foundation of Guangxi (Nos. 2018GXNSFFA050001, 2017GXNSFDA198027, and 2017GXNSFFA198011), High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes. #### References - [1] Sebastian MT, Jantunen H. Low loss dielectric materials for LTCC applications: A review. *Int Mater Rev* 2008, **53**: 57–90. - [2] Zhou HF, Liu XB, Chen XL, *et al*. ZnLi_{2/3}Ti_{4/3}O₄: A new low loss spinel microwave dielectric ceramic. *J Eur Ceram Soc* 2012, **32**: 261–265. - [3] Zhou D, Guo D, Li WB, *et al.* Novel temperature stable high- ε_r microwave dielectrics in the Bi₂O₃–TiO₂–V₂O₅ - system. J Mater Chem C 2016, 4: 5357-5362. - [4] Zhou D, Pang LX, Wang DW, *et al.* Novel water-assisting low firing MoO₃ microwave dielectric ceramics. *J Eur Ceram Soc* 2019, **39**: 2374–2378. - [5] Dou G, Zhou DX, Guo M, et al. Low-temperature sintered Zn₂SiO₄-CaTiO₃ ceramics with near-zero temperature coefficient of resonant frequency. J Alloys Compd 2012, 513: 466–473. - [6] Wang KG, Zhou HF, Liu XB, et al. A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature. J Eur Ceram Soc 2019, 39: 1122–1126. - [7] Hughes H, Iddles DM, Reaney IM. Niobate-based microwave dielectrics suitable for third generation mobile phone base stations. Appl Phys Lett 2001, 79: 2952–2954. - [8] Li YX, Li H, Tang B, et al. Microwave dielectric properties of low-fired Li₂ZnTi₃O₈-TiO₂ composite ceramics with Li₂WO₄ addition. J Mater Sci: Mater Electron 2015, 26: 1181–1185. - [9] Hao SZ, Zhou D, Hussain F, *et al.* Structure, spectral analysis and microwave dielectric properties of novel $x(\text{NaBi})_{0.5}\text{MoO}_4-(1-x)\text{Bi}_{2/3}\text{MoO}_4$ ($x=0.2\sim0.8$) ceramics with low sintering temperatures. *J Eur Ceram Soc* 2020, **40**: 3569–3576. - [10] Bi JX, Xing CF, Yang CH, et al. Phase composition, microstructure and microwave dielectric properties of rock salt structured Li₂ZrO₃–MgO ceramics. J Eur Ceram Soc 2018, 38: 3840–3846. - [11] Davis HM, Knight MA. The system magnesium oxide-boric oxide. *J Am Ceram Soc* 1945, **28**: 97–102. - [12] Nishizuka M, Ogawa H, Kan A, *et al.* Synthesis and microwave dielectric properties of MgO–*x*mol%B₂O₃ (*x* = 33 and 25) ceramics in MgO–B₂O₃ system. *Ferroelectrics* 2009, **388**: 101–108. - [13] Peng R, Li YX, Su H, *et al.* Three-phase borate solid solution with low sintering temperature, high-quality factor, and low dielectric constant. *J Am Ceram Soc* 2021, **104**: 3303–3315. - [14] Peng R, Su H, Li YX, et al. Microstructure and microwave dielectric properties of Ni doped zinc borate ceramics for LTCC applications. J Alloys Compd 2021, 868: 159006. - [15] Peng R, Su H, An D, *et al.* The sintering and dielectric properties modification of Li₂MgSiO₄ ceramic with Ni²⁺-ion doping based on calculation and experiment. *J Mater Res Technol* 2020, **9**: 1344–1356. - [16] Fan GC, Zhou HF, Chen XL. Optimized sintering temperature and enhanced microwave dielectric performance of Mg₂B₂O₅ ceramic. *J Mater Sci: Mater Electron* 2017, **28**: 818–822. - [17] Zhou HF, Tan XH, Liu XB, *et al.* Low permittivity MgO–xB₂O₃–yBaCu(B₂O₅) microwave dielectric ceramics for low temperature co-fired ceramics technology. *J Mater Sci: Mater Electron* 2018, **29**: 18486–18492. - [18] Zhou HF, Tan XH, Wang KG, et al. Microstructure and sintering behavior of low temperature cofired - $Li_{4/5}Mg_{4/5}Ti_{7/5}O_4$ ceramics containing $BaCu(B_2O_5)$ and TiO_2 and their compatibility with a silver electrode. *RSC Adv* 2017, **7**: 44706–44711. - [19] Guo HH, Zhou D, Du C, *et al.* Temperature stable Li₂Ti_{0.75}(Mg_{1/3}Nb_{2/3})_{0.25}O₃-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications. *J Mater Chem C* 2020, **8**: 4690–4700. - [20] Iddles DM, Bell AJ, Moulson AJ. Relationships between dopants, microstructure and the microwave dielectric properties of ZrO₂–TiO₂–SnO₂ ceramics. *J Mater Sci* 1992, 27: 6303–6310. - [21] Wu JM, Huang HL. Microwave properties of zinc, barium and lead borosilicate glasses. *J Non-Cryst Solids* 1999, 260: 116–124. - [22] Tzou WC, Yang CF, Chen YC, et al. Improvements in the sintering and microwave properties of BiNbO₄ microwave ceramics by V₂O₅ addition. J Eur Ceram Soc 2000, 20: 991–996. - [23] Li EZ, Chen YW, Xiong J, et al. Low-temperature firing and microwave dielectric properties of Ba–Nd–Ti with composite doping Li–B–Si and Ba–Zn–B glasses. J Mater Sci: Mater Electron 2016, 27: 8428–8432. - [24] Kim MH, Lim JB, Kim JC, et al. Synthesis of BaCu(B₂O₅) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn_{1/3}Nb_{2/3})O₃ ceramics. J Am Ceram Soc 2006, 89: 3124–3128. - [25] Huang CL, Weng MH, Lion CT, et al. Low temperature sintering and microwave dielectric properties of Ba₂Ti₉O₂₀ ceramics using glass additions. Mater Res Bull 2000, 35: 2445–2456. - [26] Zhou HF, Wang H, Zhou D, *et al*. Effect of ZnO and B₂O₃ on the sintering temperature and microwave dielectric properties of LiNb_{0.6}Ti_{0.5}O₃ ceramics. *Mater Chem Phys* 2008, **109**: 510–514. - [27] Li EZ, Niu N, Wang J, et al. Effect of Li-B-Si glass on the low temperature sintering behaviors and microwave dielectric properties of the Li-modified ss-phase Li₂O-Nb₂O₅-TiO₂ ceramics. J Mater Sci: Mater Electron 2015, 26: 3330-3335. - [28] Zhou D, Pang LX, Wang DW, et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J Mater Chem C 2017, 5: 10094–10098. - [29] Pang LX, Zhou D, Qi ZM, *et al.* Structure–property relationships of low sintering temperature scheelite-structured (1–*x*)BiVO₄–*x*LaNbO₄ microwave dielectric ceramics. *J Mater Chem C* 2017, **5**: 2695–2701. - [30] Lu XY, Fang BJ, Zhang S, *et al.* Decreasing sintering temperature for BCZT lead-free ceramics prepared via hydrothermal route. *Funct Mater Lett* 2017, **10**: 1750046. - [31] Huang CL, Wang JJ, Huang CY. Sintering behavior and microwave dielectric properties of nano alpha-alumina. *Mater Lett* 2005, **59**: 3746–3749. - [32] Bafrooei HB, Feizpour M, Sayyadi-Shahraki A, et al. - High-performance ZnTiNb₂O₈ microwave dielectric ceramics produced from ZnNb₂O₆–TiO₂ nano powders. *J Alloys Compd* 2020, **834**: 155082. - [33] Liu F, Liu SJ, Cui XJ, *et al.* Ordered domains and microwave properties of sub-micron structured Ba(Zn_{1/3}Ta_{2/3})O₃ ceramics obtained by spark plasma sintering. *Materials* 2019, **12**: 638. - [34] Bari M, Taheri-Nassaj E. Taghipour-Armaki H. Role of nano- and micron-sized particles of TiO₂ additive on microwave dielectric properties of Li₂ZnTi₃O₈–4wt% TiO₂ ceramics. *J Am Ceram Soc* 2013, **96**: 3737–3741. - [35] Yoon SH, Choi GK, Kim DW, *et al*. Mixture behavior and microwave dielectric properties of (1–x)CaWO₄–xTiO₂. *J Eur Ceram Soc* 2007, **27**: 3087–3091. - [36] Pan HL, Mao YX, Cheng L, *et al.* New Li₃Ni₂NbO₆ microwave dielectric ceramics with the orthorhombic structure for LTCC applications. *J Alloys Compd* 2017, **723**: 667–674. - [37] Zhang P, Hao MM, Mao XR, *et al.* A novel low sintering temperature scheelite-structured CaBiVMoO₈ microwave dielectric ceramics. *J Alloys Compd* 2020, **840**: 155187. - [38] Lim JB, Nahm S, Kim HT, et al. Effect of B₂O₃ and CuO on the sintering temperature and microwave dielectric properties of the BaTi₄O₉ ceramics. J Electroceramics 2006, 17: 393–397. - [39] Navias L, Green FL. Dielectric properties of glasses at ultra-high frequencies and their relation to composition. *J Am Ceram Soc* 1946, **29**: 267–276. - [40] Tang B, Guo X, Yu SQ, et al. The shrinking process and microwave dielectric properties of BaCu(B₂O₅)-added 0.85BaTi₄O₉–0.15BaZn₂Ti₄O₁₁ ceramics. Mater Res Bull 2015, 66: 163–168. - [41] Ullah B, Lei W, Cao QS, *et al.* Structure and microwave dielectric behavior of A-site-doped $Sr_{(1-1.5x)}Ce_xTiO_3$ ceramics system. *J Am Ceram Soc* 2016, **99**: 3286–3292. - [42] Lan XK, Li J, Zou ZY, *et al.* Lattice structure analysis and optimised microwave dielectric properties of LiAl_{1-x}(Zn_{0.5}Si_{0.5})_xO₂ solid solutions. *J Eur Ceram Soc* 2019, **39**: 2360–2364. - [43] Ferreira VM, Baptista JL. Preparation and microwave dielectric properties of pure and doped magnesium titanate ceramics. *Mater Res Bull* 1994, **29**: 1017–1023. - [44] Lei W, Lu WZ, Wang XC, et al. Effects of CaTiO₃ on microstructures and properties of (1-x)ZnAl₂O₄-xMg₂TiO₄ (x=0.21) microwave dielectric ceramics. J Inorg Mater 2009, **24**: 957–961. - [45] Zhang P, Zhao YG, Li LX. The correlations among bond ionicity, lattice energy and microwave dielectric properties of (Nd_{1-x}La_x)NbO₄ ceramics. *Phys Chem Chem Phys* 2015, 17: 16692–16698. - [46] Zhao YG, Zhang P. High-Q microwave dielectric ceramics using Zn₃Nb_{1.88}Ta_{0.12}O₈ solid solutions. *J Alloys Compd* 2016, 662: 455–460. - [47] Zhou DX, Sun F, Hu YX, *et al.* Low-temperature sintering and microwave dielectric properties of Mg₃B₂O₆–LMZBS - composites. J Mater Sci: Mater Electron 2012, 23: 981–989. - [48] Dou G, Guo M, Li YX, *et al*. The effect of LMBS glass on the microwave dielectric properties of the Mg₃B₂O₆ for LTCC. *J Mater Sci: Mater Electron* 2015, **26**: 4207–4211. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.